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DISCRETE PIECEWISE MONOTONIC APPROXIMATION 
BY A STRICTLY CONVEX DISTANCE FUNCTION 

I. C. DEMETRIOU 

ABSTRACT. Theory and algorithms are presented for the following smoothing 
problem. We are given n measurements of a real-valued function that have 
been altered by random errors caused by the deriving process. For a given 
integer k, some efficient algorithms are developed that approximate the data 
by minimizing the sum of strictly convex functions of the errors in such a way 
that the approximated values are made up of at most k monotonic sections. If 
k = 1 , then the problem can be solved by a special strictly convex programming 
calculation. If k > 1 , then there are 0(nk) possible choices of the monotonic 
sections, so that it is impossible to test each one separately. A characterization 
theorem is derived that allows dynamic programming to be used for dividing the 
data into optimal disjoint sections of adjacent data, where each section requires 
a single monotonic calculation. It is remarkable that the theorem reduces the 
work for a global minimum to 0(n) monotonic calculations to subranges of 
data and O(ks2) computer operations, where s - 2 is the number of sign 
changes in the sequence of the first divided differences of the data. Further, 
certain monotonicity properties of the extrema of best approximations with k 
and k - 1 , and with k and k - 2 monotonic sections make the calculation 
quite efficient. A Fortran 77 program has been written and some numerical 
results illustrate the performance of the smoothing technique in a variety of 
data sets. 

1. INTRODUCTION 

Monotonic approximation to discrete data has attracted much interest in the 
past four decades because of its wide range of applications in various disciplines 
(see Barlow, Bartholomew, Bremner, and Brunk [1] and Robertson, Wright, and 
Dykstra [7] for over one thousand references related to this subject). Demetriou 
and Powell [5] raised the important question of piecewise monotonicity, pro- 
vided methods of solution for the least squares case, and identified questions 
for further research. The main difficulty in solving the piecewise monotonic 
approximation problem is that the optimal positions of the extrema have to be 
found automatically, among so many combinations of extrema that it is impos- 
sible to test each one separately. Here we address this problem by employing a 
strictly convex distance function and present a theory that results in the develop- 
ment of highly efficient algorithms. The conditions of piecewise monotonicity 
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are equivalent to requiring a prescribed number of sign changes, say q, in the 
first divided differences of the approximation. Therefore, the proposed algo- 
rithms can be applied for smoothing data that are so rough that the number of 
sign changes in its first divided differences is much greater than q. A suitable 
value for q can be selected by plotting the data or by forming tables of the first 
divided differences of the data and checking for sign alterations. One of the 
advantages of this approach to data smoothing is that it gives properties which 
occur in a wide range of underlying functions. Furthermore, the approximation 
technique may be particularly useful in statistical data analysis when estimating 
conditional expectations subject to piecewise monotonic components. 

Let n, k be positive integers such that k < n, and let (0 be a data vector 
in Rn whose components are {ep1: i = 1, 2, ... , n}. We assume that each fi 
is a measurement of a function value f(x1), from some unknown underlying 
function f, after it has been altered by a random error ci such that fi = 
f(xi) + 61. We are concerned with vectors y E Rn which approximate (0 in 
such a way that the sequence {Yi+I - Yi: i = 1, 2, .. ., n - 1 } has at most k - 1 
sign changes. We call y E Rn feasible if there are integers {tj j = 0, 1, ... , k} 
satisfying the conditions 

(1. 1) 1 = to < tl < o< tk = n 

such that for j = 1, 2, ..., k the sequence 

{Yj : i = tj-_ , tj_1 + I,.. ti} 

is monotonic increasing if j is odd, and monotonic decreasing if j is even. In 
other words y has to satisfy the constraints 

(1.2) Ytj_1 <Yt._i+1 < ... < Ytj if j isodd, 
Ytj_l > Ytj_i+1 2 > Ytj if j is even. 

We let Y(k, n) be the set of all feasible vectors y in Rn with k monotonic 
sections and assume in this paper that the first monotonic section of each y in 
Y(k, n) is monotonic increasing. 

Let hi, 1 < i < n, be a strictly convex and continuous function from R to 
R whose smallest value is hi(O) = 0 and h1(6) -- oo as 101 -- 00. We call 
y e Rn a best or optimal approximation from Y(k, n) to (0 if it minimizes the 
function of the errors {i - yi: i =1, 2, ...,n}, 

n 

(1.3) (D(y) = Z hi(fi - yi) 
i=l 

subject to y E Y(k, n) . For example, we may let D be the pth power of a finite 
4p-norm on Rn, 1 < p < x0 0in which case hi is the expression hi(0) = IOIP, 
-oo < 0 < 00. The choice of hi allows different weights to be given to different 
measurements. In this work, hi(.) need not be a differentiable function. 

For fixed integers {tj: j = 1, 2, ... , k - 1} satisfying the conditions (1.1) 
there exists a unique vector y E Rn that minimizes the function (1.3) subject 
to the constraints (1.2) (Demetriou [3, Theorem 1]). Since there is only a finite 
number of possible {tj: j = 1, 2, ... , k - 1}, we deduce the existence of an 
optimal approximation from Y(k, n) to (o . Equalities are allowed in (1.1), but 
it is rather unlikely to occur when y is optimal because usually vp S Y(k, n) 
(Demetriou and Powell [5, Lemma 2]). 
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Efficiency considerations are important for the solution of this problem be- 
cause, as an example in Demetriou and Powell suggests, the amount of work for 
calculating an optimal approximation with k monotonic sections can require 
about (n/2)k-1/(k - 1)! linearly constrained minimization calculations in n 
variables, which becomes prohibitively expensive even for small values of n 
and k. However, in the least squares case an optimal algorithm of Demetriou 
and Powell [5] requires only 0(ns + ks logs) computer operations at the ex- 
pense of s2 memory positions, where s - 2 is the number of sign changes in the 
sequence {Ioi+I - oi : i = 1, 2, ... , n - I} . This remarkable result is based on 
the fundamental property that an optimal approximation is composed of sepa- 
rate optimal monotonic sections where each section is calculated independently 
of the others. 

Here we study the case where the objective function has the form (1.3). 
A characterization theorem that allows an equivalent dynamic programming 
formulation of the problem is the subject of ?2. It establishes a recurrence 
formula which can determine optimal values for the integer variables {tj: 
j = 1, 2, ... , k - 1 }. In ?3, an effective technique restricts the values of 
{tj j = 1, 2, ... , k - 1} to the indices of the local extrema of the data, 
because the optimal values of {t1: j = 1, 2, ... , k - 1} are a subset of the 
latter set. These considerations lead to Algorithm 1, which is often slower than 
the Algorithm 2 presented later in ?4, but it is useful for showing the efficacy 
of the following properties. If we denote by T(k, t) the value of the integer 
variable tk-l that occurs in an optimal approximation in Y(k, t), then T(k, t) 
is a monotonically increasing function of t. Also, T(k, t) is a monotonically 
increasing function of k when k steps by two and t remains constant. There- 
fore, T(k, t) can be restricted at or to the right of already calculated values 
T (k', t'), to fewer data, say t' < t, and fewer monotonic sections, say k' < k. 
These properties give theoretical support to a considerable improvement of the 
dynamic programming procedure when applied to practical calculations. Both, 
the underlying formula and the monotonicity properties, were known already 
to Demetriou and Powell [5], but the theory here focuses on algorithms that 
take into account the position of the rightmost integer variable tk. 1. These 
algorithms solve the problem routinely by employing only 0(n) monotonic 
calculations to subranges of data. Further, the theory establishes a methodol- 
ogy which helps to understand the behavior of the underlying approximation, 
but we restrict our discussion to those results which are useful to the develop- 
ment of the algorithms. The efficacy of least squares versions of the algorithms 
that employ these formulae is tested by extended experimentation in ?5 in a 
variety of data sets. Section 6 contains some concluding remarks. Finally, an 
appendix presents an algorithm for monotonic approximation that is useful to 
the main algorithms in this work. 

2. THE FUNDAMENTAL RECURRENCE FORMULA 

This section states an equivalent minimization problem for the problem of ? 1 
that depends on the decomposition of an optimal approximation from Y(k, n) 
to q into separate optimal monotonic sections that increase and decrease al- 
ternately. Since these sections can be calculated independently of each other, 
we need to consider an algorithm for monotonic approximation. Therefore, for 
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given positive integers p and q, we define the quantities 
q 

(2.1) a(p, q) = <mimn < E hi (ii - yi) < p < q < n, 

and 
q 

(2.2) f,(p, q) = min E 1 < p < q < n . 
Yp?Yp+i??* Yq 

For any {I(o: i = p, p + 1, ... , q} there exists a unique best monotonic increas- 
ing (respectively, decreasing) approximation {Yi: i = p, p + 1, ..., q} whose 
components satisfy the constraints that occur in the definition of a(p, q) (re- 
spectively, f,(p, q)) . An algorithm for this calculation is given in the appendix 
in order to be used in an inner loop in the algorithms for the main calculation 
of ? 1. The monotonic procedure is justified by the following lemma. 

Lemma 1. Let J be any set of integers such that J c { 1, 2, ... , n - 1}, and let 
z be the vector that minimizes (1.3) subject to the constraints {yi < Yi+1: i E J} . 
If y minimizes (1.3) subject to the constraints {yi < yi+1: i E [1, n- 1]}, and if 
j is an integer in [1, n- I] such that yj < Yj+I, then zj < yj and Yj+I < zj+ I. 
Further, if j is an integer in [1, n - 1] such that zj > zj1I, then Yj = yj+ 
Proof. By Lemma 3 and Theorem 2 of Demetriou [3]. 0 

According to this lemma, if z is the best approximation to q subject to a 
subset of the monotonicity constraints Yi < Y2 < ... < Yn, then any constraint 
violated by z is satisfied as an equality by the solution. Thus, Lemma 1 suggests 
the development of an algorithm that inserts one monotonicity constraint at a 
time into the calculation, and therefore terminates in exactly n - 1 iterations, 
giving the best monotonic increasing approximation to (0. We note that the 
sequence {a(p, j): j = p, p + 1, ... , q} is monotonic increasing, because if 
we remove the constraint yj < Yj+1 from the definition of a(p, j + 1), the 
value of a(p, j + 1) is not greater than before, and it is equal to a(p, j). 
Similarly, {,f(j, q): j = p, p + 1, . .. , q} is a monotonic decreasing sequence. 
This observation will prove useful for the proof of Theorem 1 later. We suppose 
now that both y and the integer variables {tj: j = 1, 2, ... , k- 1} are optimal; 
the following lemma states the optimality of each monotonic section of y. 

Lemma 2. Let 4D be the strictly convex function defined by (1.3), and let the inte- 
ger variables {t: j = 1, 2, ... , k-1} be associated with an optimal approxima- 
tion y from Y(k, n) to (0 ? Y(k, n) . Then {yj: i = tj_I, tj_ + 1, . ..., tj} is 
the best monotonic increasing approximation to {(Pi: i = tj-I, t>_j + 1, ... , tj} 
if j is odd, and the best monotonic decreasing approximation if j is even. Fur- 
ther, the interpolation conditions 

(2.3) ~~~Ytj = IP tj, j = I1, 2, ... k- 1, 
are satisfied. 
Proof. By the properties of the functions hi, Lemma 3, and Lemma 4 of 
Demetriou and Powell [5]. 0 

Lemma 2 states the main property of a piecewise monotonic approximation 
y from Y(k, n) to (0. If y is optimal, then it consists of optimal disjoint sec- 
tions of monotonic components that satisfy the interpolation conditions (2.3). 
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This statement implies that once optimal values of {tj j = 1, 2, ..., k - 1} 
have been found, then an optimal y can be formed by k separate monotonic 
approximation calculations between successive ftj. The question of how to 
calculate optimal values of {tj: j = 1, 2, ... , k - 1} is answered by Theorem 
1 below. There, a recursive formula is derived whose efficiency is entirely due 
to the small number of operations required in order to identify optimal values 
for {tj: j = 1, 2, ... , k - 1}. However, the method for constructing an op- 
timal approximation will not be described until after the proof of Theorem 1. 
In order to establish the recursion, we introduce the notation 

y(k, t)= min hi((i - yi), t E [1,n]. 
YEY(k, t) 

Theorem 1. Let tk-l be an optimal integer variable in the usual notation. Then 
y is an optimal approximation from Y(k, n) to (0 E Rn if and only if the 
equation 

(2.4) y(k - 1, tk-l) + d(tk-l, n) = min [y(k - 1, s) + d(s, n)] 1<s<n 

holds, where 

(2.5) d(tk-l, n) = { a(tk-l, n) if k is odd, 
,Bf(tk-I n) If k is even. 

Proof. Let y be an optimal approximation from Y(k, n) to (0. Then {Yi 
i = 1, 2, ... , tk-1} is an optimal approximation from Y(k - 1, tk-l) to 
{(Pi: i = 1, 2, ..., tk.11}, and {Yi: i = tk.1, tk. + 1l, ..., n} is the best 
monotonic increasing approximation to {(oi: i = tk-1, tk-1 + 1, ... , n} if k 
is odd, and the best monotonic decreasing approximation if k is even. The 
last assertion follows immediately from Lemma 2, while the first is a conse- 
quence of the following contradiction. If {Ii: i = 1, 2, ... , tk 1} but not 
{yi: i = 1, 2, ... , tk- } solves the subproblem that gives an optimal approxi- 
mation from Y(k - 1, tkl1) to {ep: i = 1, 2, ... , tkl1}, then we can replace 
each yi by 'i for i E [1, tk II in y that preserves the feasibility of the 
constraints and reduces the value of the objective function (1.3) at y. Thus 
{yi: i = 1, 2, ... , tk-I } has to be optimal. Hence, and from the interpolation 
conditions of Lemma 2 and the equation htkl (Ytk_ - Ptk 1) = 0, we obtain the 
equation 

(2.6) ??(y) = y(k- 1, tk-I)+ d(tk.l, n), 

which implies the inequality 

(2.7) ??(y) > min [y(k - 1, s) + d(s, n)]. 
1 <s<n 

Therefore, the optimality of y implies the equation (2.4) provided that (2.7) 
holds as an equality. Let s be any integer that satisfies 1 < s < n, and let 
Z E Rn be such that the first s components of z give the best approximation 
from Y(k- 1, s) to {ep : i = 1, 2, ..., s} andthe last n-s componentsof z 
give the best monotonic approximation to {Ii: i = s + 1, s + 2, ... , n} . Then 

(2.8) 4?(z) = y(k - 1, s) + d(s + 1, n), 
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where we define d(s + 1, n) = 0 if s+ 1 > n. Since z E Y(k, n), it follows 
that 

(2.9) (D(y) < ?D(z) < y(k - l,s) + d(s, n), S E [1, n], 

for any optimal y in Y(k, n). Thus the inequality 

(2.10) DI(y) < min[ y(k - 1, s) + d(s, n)] 
l<s<n 

is satisfied. In view of (2.7) and (2.10), the equation (2.4) follows, and therefore 
the if-part of the theorem is proved. 

To complete the proof of the theorem, we assume that tk- satisfies equa- 
tion (2.4). We note that more than one optimal y may yield the value y2(k, n), 
but the last n - tk.1 + 1 components of y always have the values that yield 
d(tk-l, n). Therefore, we must ensure that the tk-lth component of any op- 
timal vector that occurs in y(k - 1, tk-1) is equal to both Ptk-l and the first 
component of the unique vector that occurs in d(tk-l, n). 

We shall show that any vector y that occurs in the definition of y and d 
in the left-hand side of the equation (2.4) is an optimal approximation from 
Y(k, n) to ip. Let {{Y): i E [1, tkl]} be the components of y that occur in 

the definition of y(k - 1, tkl), and let {y4d) : i E [tk_l, n]} be the components 
of y that occur in the definition of d(tk-l, n). We set t = tk.1 and construct 
Z E Rn whose components for i E [1, n] are as follows: 

max[yt(", yt4d) if i = t for even k, 
miny(y y()]if i = t for odd k, 

(2.11) =i tY ifl <i?t1, 

y(d) if t + 1 < i < n, 

where we omit the penultimate line if t - 1 < 1 and the last line if t + 1 > n. 
Thus, z is a feasible vector whose rightmost integer variable is at t. Further, 

(2.12) (D(z) < y(k - 1,t) + d(t, n), 

but the right-hand side of (2.12) is the least feasible value of (D(.) owing to 
the first part of the theorem. Therefore, (2.12) must be an equality, 

(2.13) (D(z) = y(k - 1,t) + d(t, n). 

We have satisfied optimality for z, and we shall show that y = z. For y to be 
optimal, it remains to show that yt(" yt(d) Without loss of generality, and in 
view of (2.1 1), we assume that 

(2.14) Zt=yt() for even k. 

Since z is optimal (cf. (2.5)), 

(2.15) 01(z) =2y(k- l,t)+fl(t+ 1, n) forevenk, 

where we define fl(t + 1, n) = 0 if t + 1 = n. In view of (2.13) and (2.15) we 
obtain fl(t, n) = fl(t + 1, n). Thus, if gt < Yt(d) , then 3(t, n) > /(t + 1, n) 
by the discussion following Lemma 1 on the decreasing monotonicity of f,. 
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It follows that pt > y(d), and by optimality, yd) = t. Now (2.14) and the 
definition of zt imply y(') > ot . If we had 

(2.16) Y() > (Ot, 

then, in view of Lemma 1, the components IY): i E [1, t]} would have to 
be calculated subject to the restriction Yt- I = Yt. However, the approximation 
z E RI whose components are defined by {Z y i = 1, 2,..., t - 1} and 
{Zi = yd): i = t, t+1, ... , n} is feasible and relaxes the restriction Yt-I = Yt . 
It follows that 4>(D) < d1(z), which is a contradiction to the optimality of z. 
Thus the inequality (2.16) must be false and the equalities y(7) - (d) = ot are 
satisfied. Therefore, y is optimal, as was required to be proved. Since the other 
cases can be treated similarly, the theorem is proved. O 

Theorem 1 establishes an equivalent formulation of the optimization prob- 
lem of ? 1 that is highly useful in practice. It shows that the least value of (1.3) 
subject to the piecewise monotonicity constraints (1.2) can be derived by ap- 
plying recursively the formula (2.4). Therefore, if t is an integer in [1, n], if 
m is an integer in [1, k], and if, for a given s = sm-I in [1, t], the variables 
{sj: j = 1, 2, ... , m - 2} have been calculated to minimize y (m - 1, s), then 
the equation 
(2.17) y(m, t) = min [y(m - 1, s) + a(s, t)], m odd, 

I1<s<t 

is satisfied. It follows that the least value of the right-hand side of (2.17) can be 
found in 0(t) computer operations provided that the sequences {Iy(m - 1, s): 
s = 1, 2, ..., t} and {a(s, t) : s = 1, 2, ..., t} are available. A similar 
conclusion follows if m is even. Therefore, y(k, n), which is the least value 
of (1.3), can be calculated recursively, starting from y(l , t) = c(1, t) for t = 
1, 2, ..., n. Then, for m = 2, 3, ..., k, having calculated {y(m- 1, t): t = 
1, 2,. . ., n}, we derive {'y(m, t): t = 1, 2, . . ., n} by applying the formulae 

(2.18) y'(m, t) = | min,<St[2Y(m - 1, s) + a(s, t)], m odd, 
2t min1<s<t[y(m - 1, s) + fl(s, t)], m even, 

and storing the optimal value of s which occurs in formula (2.18), say Tr(m, t) . 
Storing T(m, t) for each value of m and t is necessary in order to obtain an 
optimal sequence {tj: j = 1, 2, ..., k - 1} by the backward formula 

(2.19) tkfl n, 
(2.19) ~tm_-1=T(m, tm), m =k,~k -1,.. 2, 

at the end of the recursion. Therefore, the associated optimal approximation to 
the data is made up of the following sections: monotonic increasing on [1, tl] 
and on [tj- , tj] for odd j in [ 1, k], and monotonic decreasing on [tj- , tj] 
for even j in [1, k] . 

An immediate advantage of formulae (2.18) is their simplicity in imple- 
mentation, which allows several options. For example, one may calculate ini- 
tially the numbers (2.1) and (2.2), keep them in store, and then use them in 
(2.18). Alternatively, one may calculate these numbers before increasing t in 
(2.18). However, these formulae are never actually employed in our calcu- 
lations. They only provide support to the further analysis of improved ver- 
sions that make use of properties which restrict the range of possible values of 
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{t1 j = 1, 2, ... , k - I}. The following two sections are devoted to these 
improvements. 

3. RESTRICTING THE RANGE OF SEARCH FOR THE INTEGER VARIABLES 

In this section we improve upon the computation by considering values of 
s and t in formulae (2.18) such that p and pt are local extrema of the 
sequence {J,: i = 1, 2, ... , n}. Therefore, we need to define the concept of 
a local extremum of a discrete set of data. For a data ordinate pt , let 1 and 
g be the least and greatest integer, respectively, in [1, n] such that 1 < t < g 
and {Jo, = -(Pt i E [1, g]}. Then ot is a local maximum if either 1 = 1 or 
(pj-j < fp, and if either g = n or fog > (Pg+i. A local minimum is defined 
similarly. The search for tj can be restricted to the set of the indices of the local 
maxima of the data if j is odd, and to the set of the indices of the local minima 
if j is even. Hence, it suffices to calculate c(s, t) and fl(t, s) in (2.18) only 
when s is the index of a local minimum and t is the index of a local maximum 
of the data. This statement is established by the following lemma. 

Lemma 3. Let the integer variables {t1 j = 1, 2, ... , k - 1} be associated 
with an optimal approximation y from Y(k, n) to q. ? Y(k, n). Then for 
each j E [1, k - 1] the integer tj is the index of a local mcaximum of {Iof i = 
1, 2, .. ., n} if j is odd, and the index of a local minimum if j is even. 
Proof. Let j be an odd integer in [1, k - 1], and let 1 and g be the least 
and the greatest integer, respectively, in [1, n] such that 1 < tj < g and 
{yi = (Ptj : 1 < i < g} . First we shall show that ytj is a local maximum of 
{yj: i = 1, 2, ... , n}, and then we shall show that Potj is a local maximum of 
the data. 

Let 1 < 1 < g < n . We assume that yg < Yg+l and establish a contradiction. 
Since the sequence {Yi: i = tj, tj + 1, . .. , tj+1 } is monotonic decreasing, and 
since the components of y increase to the right of g, it follows that tj+I E 

[tj, g] . Hence, y consists of at most k - 2 monotonic sections. Thus replacing 
any yi such that yi $ fo by (Pj preserves the feasibility of y and reduces the 
value of <)(y), which is a contradiction. The argument implies that yg > Yg+I, 
and by an extension we obtain Yl- I < Yi, which shows that Ytj is a local 
maximum of {yj: i = 1, 2, ... , n} as required. 

It remains to show that rptj is a local maximum of the data. An argument 
similar to that in the previous paragraph implies that ti-I and tj+l ? [l, g]. 
We also need to prove that 

(3.1) (gi= j I< i<g. 

If fo > yi for some i E [1, g], then we can increase yi, which preserves the 
feasibility of y and reduces the value of ?(y). It follows that fp < yi, i E 
[1, g]. Hence, and by Lemma 1, we obtain Yi = fpj. Thus, let r be an integer 
in [1 + 1, t1 - 1] that gives (Pr < Yr , and let t be the value of 0 that minimizes 
the expression h, ((pj - 0) +... + hr 1 ((Pr- I - 0) . Then i > Yr , because otherwise 
we can reduce each of the numbers {yj: i = 1, 1 + 1, ... , r - 1} so little that 
feasibility of y is preserved and ?(y) is reduced. It follows that 1 > (Pr, 
which, by Lemma 1 and the definition of 1 and g, implies that y satisfies the 
constraint Yr- I = Yr,. We may avoid this constraint in the calculation of y if we 
replace each of the components {Yi: i = 1, 1 + 1, ... , r - 1} by , but then we 
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rule out the optimality of the former y. A contradiction has been established 
because of the assumption fOr < Yr. It follows that {y1 = Pi: i E [1, tj]}, and 
we may similarly show that {y1 = Pi: i E [tj, g]}. Thus, (3.1) holds. Hence, 
and since the components of y decrease to the left of Yi and to the right of 
yg, the inequalities 

(3.2) fl-1 < (1 and og > (Pg+1 

are implied by Lemma 1. We conclude that, when 1 < 1 < g < n, Ptj is a local 
maximum of the data. As the other cases may be treated similarly, the proof 
of the lemma is complete. o 

Demetriou and Powell [5] define Z/ and Y to be ascendingly ordered sub- 
sets of {1, 2, . .. , n} as follows: Z/ consists of all integers t E [1, n -1] such 
that t is the index of a local maximum of the data and ot > fot+l . Further, 
n E Z/ if and only if it is the index of a local maximum and k is even. If a is 
the smallest element of Z/, then Y consis, of all integers t E [a + 1, n - 1] 
such that t is the index of a local minimum of the data and pt < fot+l . Further, 
n E Y if and only if it is the index of a local minimum and k is odd. Note 
that Y and Z/ are disjoint, their elements interlace, and they can be formed 
in 0(n) operations. 

These considerations, in view of Lemma 3, allow formulae (2.18) to be re- 
placed by 

(3.3) Y(M r t) minSE[1,t]nYw[Y(m -1, s) + a(s, t)], m odd, 
(3.3) ~ '(m, t) = ~ minSE[1,t]tin[Y(m -1, s) +fl(s, t), m even. 

Provided that we have calculated the quantities {a(s, t): 1 < s < t, (s, t) E 
x Z} and {fl(s, t) : 1 < s < t, (s, t) E x Y} in (3.3), we derive 

{y(m, t): t E Z/ (or Y)} from {y(m, t): t E Y (or Z{)} in the order of 
I'1I2 operations, which completes the calculation of y(k, n) in 0(kl 12) op- 
erations. We can either work with 0(1212) storage space or just 0(k[I-I) . If 
we calculate ac(s, t) and ,B(s, t) in advance and keep them in store, this would 
increase by up to 1Y12 the required memory positions and may be uneconom- 
ical on many computer installations, especially if IS1 z n/2. Alternatively, 
calculating a(s, t) and fl(s, t) before incrementing t in Algorithm 1 would 
require only one IZiI-vector to store {y(m, t): t E Z/} and one IYI-vector to 
store {a(s, t) : s E [1, t) nYl or {,B(s, t) : s E [1, t) nZ/ and one (k x 1Y1)- 
array to store {t(m, t): 1 < m < k, t E Z/ if m is odd or t E Y if m 
is even}. Hence, a total of 0(kIYI) memory positions would be required for 
these arrays. The main disadvantage of this technique is unnecessary work, 
because each of the required quantities a(s, t) and fl(s, t) is calculated about 
k/2 times. 

However, a(s, t) and fl(s, t) are independent of m, so they need not be 
calculated more than once, and they need not be preserved as t changes, pro- 
vided that they are used before incrementing t in (3.3) for all values of m in 
[1, k - 1] . Hence, if {a(s, t) : s E [1, t) n Y} are available for some t, then 
we should calculate {Iy(m, t) : m odd in [1, k - 1]} for this fixed t. Similarly 
for {fl(s, t) s E [1, t) n Z/}. This suggests the most economical way of im- 
plementing formulae (3.3). Taking these considerations into account, we derive 
Algorithm 1, which may be regarded as a version of Algorithm 2 of Demetriou 
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and Powell [5]. We recall that the first monotonic section of an optimal approx- 
imation is required to be increasing. Even when the number of the extrema of 
the data is at most as large as the required number of extrema of the smoothed 
values, the first monotonic section is still increasing, because by definition the 
smallest element in & is larger than the smallest element of D'. Algorithm 3 
of the Appendix provides the monotonic calculation. 

Algorithm 1 (Best piecewise monotonic approximation). 
Step 0. Form the sets SZ and . . If I/I + I1.I < k, then terminate because 

yE Y(k, n). 
Step 1. Set t to the smallest element of W. For each odd value of m in 

[1, k - 1] store y(m, t) = 0 and r(m, t) = I1. 
Step 2. If no element of ' is greater than t, then branch to Step 9. Oth- 

erwise make the least increase in t such that t E S. 
Step 3. Calculate the numbers {fl(s, t) s = 1, 2, ..., t} by applying Algo- 

rithm 3 to the data {~s : s = t,~ t - 1,~ ..., I}. 
Step 4. For each even value of m in [1, k - 1] store y2(m, t) and T(m, t), 

which are obtained from formulae (3.3). 
Step 5. If no element of D' is greater than t, then branch to Step 9. Other- 

wise make the least increase in t such that t E . 
Step 6. Calculate the numbers {a(s, t) s = 1, 2, ..., t} by applying Algo- 

rithm 3to the data {-s : s =t, t - 1,., . 
Step 7. For each odd value of m in [3, k - 1] store y(m, t) and T(m, t), 

which are obtained from formulae (3.3). 
Step 8. Go to Step 2. 
Step 9. Set t and tk to n and m = k. Let tk-l be a value of s that 

minimizes (3.3). 
Step 10. For j = k - 2, k - 3,..., 0, set tj =Tr(j + 1, tj+i) 
Step 11. Apply Algorithm 3 k times in order to calculate the components of 

the optimal approximation which are monotonic increasing on [1, tl] and on 
[tj-l, t] for odd i in [1, k], and monotonic decreasing on [tj-l, tj] for even 
j in [1,k]. 0 

The main expenses of Algorithm 1 occur in Steps 3 and 6, where the mono- 
tonic algorithm is called I1/I - 1 and I.? times, respectively, and k more 
times in Step 11. Steps 4 and 7 require O(kIWI2) operations, and the remain- 
ing calculation is of the order of n operations. Therefore, if w is an upper 
bound to the numerical work required by Algorithm 3 in Step 3 and Step 6 
of Algorithm 1, then Algorithm 1 requires O(w WI + kIWI2) computer opera- 
tions for calculating an optimal approximation with k monotonic sections to 
(O E Rn. We should note that the main costs of the monotonic calculations 
depend upon the particular algorithm that is employed for calculating the best 
approximation by a constant to the data sequence {Io : i = t, t + 1, .I. , j} as 
it appears in Step 4 of Algorithm 3. 

When the least squares version of the monotonic algorithm is applied (see 
Algorithm 1 of Demetriou and Powell [5]), then the complexity of Algorithm 1 
reduces to O(nlI/I + kIZ/12). Extensive numerical experimentation testing the 
performance of this version on randomly generated data is presented in ?5. 

An efficient extension of Algorithm 1 is developed in the next section by 
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restricting the range of the variable s in formulae (3.3); in this way much 
unnecessary calculation is avoided. Hence, Algorithm 1 is often slower than 
Algorithm 2 of ?4, but it is useful for comparisons. 

4. MONOTONICITY PROPERTIES OF THE RIGHTMOST INTEGER VARIABLE 

This section investigates two monotonicity properties of the integer variable 
tk-l when considering optimal approximations to subranges of data. They are 
particularly successful in reducing the numerical work in formulae (3.3), by 
imposing lower bounds on the variable s. 

In the subsequent discussion we assume that T(m, t) is always made as small 
as possible whenever there is a choice. The first property is presented in Theo- 
rem 3 after we state some technical details in Lemma 4. Let s and j be integers 
such that 1 < s < j < n, and let Ij(s) be the least sum of functional changes 
by a best approximation from Y(m, j) to {(oi: i = 1, 2, ... , j} subject to the 
restriction that tm-i = s; that is, 

(4.1) IDj(s) = min E hi(i - yi). 
tml,=Si= 

Lemma 4. Let hi and Dj(s) be as already defined, and let r be any integer 
such that 1 < r < n - j. Then the expression 

(4.2) [(Dj+r(s) - (iD(s)], 1 < s < j, 

is a monotonic decreasing function of the integer variable s. 
Proof. We assume that m is an even integer in [1, k], s, t, and j are any 
integers such that I < s < t < j < n, and y(J) E Ri and y(i+r) E Ri+r are 
vectors that occur in the definitions of Dj(t) and Dj+r(S), respectively. It 
suffices to show that 

(4.3) cIj+r(S) + cDjI(t) > (Dj+r(t) + (Dj(S). 

Starting from any vectors y(J) and y(i+r), we shall construct vectors that are 
feasible relating to each term in the right-hand side of (4.3). Since s < t < j < 
j + r, the last monotonic sections of these vectors, in view of Lemma 1, give 
the inequality y(i) > y(i+r) . Let v E [1, j] be the integer t -1 if y(J) = y(i+r). 
otherwise v is any integer in [t, j] that satisfies y(i) > y (i+r) and either v = j 
or yvj+1 < y-iv+r) whenever v < j. We consider z(i) E J and z(j+r) E 
defined by 

f (j+r) I 2 V 
(4.4) ZU= y{ 

and by 

(4.5) Z~I+r) ={yIj+ 
(4 5)z(j+r = {(j+r) i-1+ I; v +2, ..., j + r , 

respectively, where we omit the second line of (4.4) if v = j. 
By construction, < s(i and we have to show that {z() i = s, s + 

1,..., j} is a monotonic decreasing sequence, which is clear if v = j. If 
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v < j, then the sequences z() i=s,s+1, .. ., v} and {z(j): i=v+1, v+ 
2, ..., j} are monotonically decreasing. It suffices to show that z( > I 
which is true, because in view of the definitions of s and Is, we obtain zv 

jr)>y(j+r) j)= Z Thus 
yV > ++ > Y+1 = +1 I Thus, z(i) E Y(m, j), and its rightmost integer 
variable, tm-i say, satisfies the equation tm-i = 5. 

Also, by construction, z (j+r) < Z(j+r), and we have to show that {Z(j+r) t-1 tI 
= t, t + 1, ..., j + r} is a monotonic decreasing sequence, which follows 

immediately when v = t- 1, because y(i) = y(I+r) and the sequence {y(i+r) 
i = t, t+ 1, .. ., j+r} is monotonically decreasing. If v > t, then the sequences 

{jzj+r) i -t t+ 1, ..., v } and {z(I+r): i = v + 1, v + 2, ..., j + r} are 
monotonically decreasing. It suffices to show that z(i+r) > z , which follows 
from i(j+r) = U41) > y(j+r) > Uj+=r) (+r) Thus, z(j+r) E Y(m, j + r), and its 
rightmost integer variable, tmi, say, satisfies the equation tmi, = t. 

Further, in view of the definitions (4.4) and (4.5) we obtain the identity 
j+r j j j+r 

(4.6) E hsoi-yi(+r)) + i hi(o-Yi(4)) - E h1(- - z(j)) + E hi(,oi -Zii+r)) 
i=s i=t i=s i=t 

where we let . hi(oi - y0)) = 0 if v =j. 
Now in view of (4.4), (4.5), and (4.6) the sum [Dj+r(s) + Dj(t)] is expressed 

in the form 
i j+r 

(4.7) (Dj+r(s) + 11(t) = hi(oi - z()) + j hi(pi- - ) 
i=1 i=1 

Since z(i) and Z(j+r) are feasible relating to the definitions of (Dj>(s) and 
(Dj+r(t), it follows that the right-hand side of (4.7) is bounded below by [Dj(s)+ 
(Dj+r(t)]. Hence we deduce the inequality (4.3). Since the case when m is odd 
may be treated similarly, the proof of the lemma is complete. 5 

Theorem 2. Let z(m, 1) be any value of s that minimizes (3.3), where t is 
replaced by 1 and z(m, 1) is least if there is any choice. If t is any integer 
such that t > 1, then every optimal approximation from Y(m, t) to the data 
{Pio: i = 1, 2, ..., t} satisfies the condition 

(4.8) T(m, t) > T(m, 1). 
Proof. Suppose that there exists an optimal approximation from Y(m, t) to 
{^P : i = 1, 2, ...,~ t} such that 

(4.9) T(m, t) < T(m, 1). 

Then in view of the optimality and the choice of z(m, 1) we have Ol(z(m, t)) > 
DI(z(m, 1)), and in view of Lemma 4 we derive 

Dt (T (M t)) -O(T (M,) > Dt (T (M, I)) - (Dl (T (M, 1)) . 

The last two inequalities imply the bound Dt(T(m, t)) > Dt(T(m, 1)), which 
contradicts the definition of z(m, t). The conclusion of the theorem fol- 
lows. D 

This theorem shows that the integer variable tm-I = T(m, t) of every optimal 
approximation from Y(m, t) to the first t data is at, or to the right of, the 
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least integer variable T(m, 1) of an optimal approximation to fewer, say the 
first 1, data. Therefore, it suffices to restrict s in formulae (3.3) at, or to 
the right of, the least known value of the numbers {z(m, 1): 1 < t}, where 
each z(m, 1) is chosen to be as small as possible whenever there is a choice. 
This choice of z(m, 1) will prove to be useful to Algorithm 2 below, because 
no intermediate optimal approximation from Y(m, 1), 1 < n, to {Ii: i = 
1, 2, ... , 1} is excluded from consideration in the construction of the final 
optimal approximation from Y(k, n), k > m, to {(oi: i= 1, 2, ..., n}. 

Additional restrictions to the range of s in (3.3) can be achieved by relating 
the rightmost integer variables of optimal approximations whose monotonic 
sections differ by two. Theorem 3 and its supporting lemma below show that all 
possible values of T(m + 2, n) of optimal approximations from Y(m + 2, n) 
to v are bounded below by the least value of z(m, n) if there is any choice 
among the best approximations from Y(m, n) to v . Let m and s be integers 
such that 1 < s < n and 1 < m < k, and let D(m, s) be the sum of functional 
changes by a best approximation from Y(m, n) to v subject to the restriction 
that tm-l = s; that is, 

n 

(4.10) (D(m, s)= min hi (i - yi) 
yE'Y(m, n) 

Lemma 5. Let hi and D(m, s) be as already defined. Then the expression 

(4.11) [D(m+2, s) -D(m, s)], 1 <s < n, 

is a monotonic decreasing function of the integer variable s. 
Proof. We assume that m is an even integer in [1, k], t and s are any integers 
such that 1 < s < t < n, and y(m+2) and y(m) are vectors in Rn that occur in 
the definitions of D(m + 2, s) and D(m, t), respectively. It suffices to show 
that 

(4.12) D(m + 2, s) + D(m, t) > D(m + 2, t) + (D(m, s). 

Starting from any vectors y(m+2) and y(m), we shall construct vectors that are 
feasible relating to the definitions of 1D(m + 2, t) and 1(m, s). Let {t(m+2): 

i = 0, 1,.., m+2} and {tm): i = 0, 1,..., m} be the values of the integer 
variables associated with y(m+2) and y(m), respectively. Hence, t = t(m) and 

s = tm+2), and by assumption 

(4.13) t(m+2) < t(m) m+1 ml 

Let j be the largest integer in [1, m - 1] such that 

(4.14) t(m) < t(m+2) i=O, 1, ... j I - i+2 

where without loss of generality we assume that j is even. It follows that 

(4.15) t(m+3) < t(m) 

the existence of the j being implied by (4.13). The inequalities (4.14) and 
(4.15) imply the inclusion relation 

(4.16) [t(m+2), tS(m+2)] C [t(m) t(m)] 



170 I. C. DEMETRIOU 

Hence, and from Lemma 1, there exists an integer z in [t (m+2) t5(m+2)i that 
satisfies y m+2) > ym and either z = tm+2) or Y(m2) < y , or, alterna- 
tively, yTm) - yTm+2) for z = t+32). The definition of z allows {y(m+2) 

i = t(m+2), t(m+2) + 1, ..., n} and {y(m) i= t(m), t(m) + 1,...,n} tohave 
m - j - 1 monotonic sections. Therefore, we consider the vectors z(m+2) and 
z(m) in Rn defined by 

(m+ m)fYi i =I,2,...,Tz-, (4.17) Zm+2= {iy 

and 

y(m+2) T, T + s, ...,n. 

Since t =trm)- > tj+m) > T by an argument similar to that in the para- 
graph following relation (4.5), the sequence {Iz(m+2) = t, t + 1, ..., n} 
is monotonic decreasing, and since s = tMm+2) > +3 > , the sequence 

fzi(M):i = s, s + 1, ... , n} is monotonic decreasing too. It follows that z(m+2) 

is an approximation from Y(m + 2, n) to v whose rightmost integer variable, 
tm+i say, satisfies the equation tm+i = t, and z(m) is an approximation from 
Y(m, n) to v whose rightmost integer variable, tmi, say, satisfies the equa- 
tion tmi, = s. Then, in view of the definitions of z(m+2) and 1D(m + 2, t), 
and z(m) and 'D(m, s), we obtain the inequalities 

n n 

(4.19) Zhi(oi - Zim+2)) > 1D(m + 2, t) and Zhi((oi - z ?m)) > 1D(m, s), 
i=i i=i 

respectively. Hence, by using (4.17), (4.18), and (4.19) we derive the expression 
n n 

1D(m + 2, s) + 1?(m, t) = , hi((o1 - Z(m+2)) + E hi(i - z-m)) 
i=i i=i 

> ((m +2, t) + D(m, s), 

as was required. Since the case when m is odd may be treated similarly, the 
proof of the lemma is complete. 5 

Theorem 3. Let {tj j = 1, 2,..., m - I} be values of the integer variables 
associated with an optimal approximation from Y(m, n) to qp such that tm-i = 

T(m, n), where T(m, n) is as small as possible if there is any choice. Then every 
optimal approximation from Y(m + 2, n) to v satisfies the condition 

(4.20) T(m + 2, n) > T(m, n) 
Proof. Suppose that there exists an optimal approximation from Y(m + 2, n) 
to (o such that T(m + 2, n) < T(m, n). Then in view of the optimality and 
the choice of T(m + 2, n) we have 

1D(m + 2, T(m + 2, n)) < D(m + 2, T(m, n)), 
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and in view of Lemma 5 we derive 

D(m + 2, T(m + 2, n)) - D(m, T(m + 2, n)) 
> D(m + 2, z(m, n)) - (D(m, T(m, n)). 

The last two inequalities imply the bound D(m, z(m+2, n)) < D(m, z(m, n)), 
which contradicts the definition of z(m, n). The conclusion of the theorem 
follows. o 

As was noted just before Lemma 5, the integer variable tm-l = z(m, n) 
of every best approximation with m monotonic sections for m > 4 may be 
found at, or to the right of, the rightmost integer variable of least value of a best 
approximation when m is reduced by 2. Hence, in view of Theorems 2 and 3, 
if 1 < t and if both z(m, 1) and T(m - 2, t) are known, we need not consider 
values of s in formulae (3.3) which are less than max[T(m, 1), z(m - 2, t)], 
where we set z(O, t) = 1 . Thus (3.3) may be expressed in the form, 
(4.21) 

y(m, t) = { minsE[max[O(m),T((m-2,t)],t]ni[y(m - 1, s) + a(s, t)], m odd, 

minsE[max[o(m),T(mM-2,t)],t]n/[y(m - 1, s) + f3(s, t)], m even, 
where 0(m) is the greatest value of {z(m, 1): 1 < t} that has already been 
calculated, and as usual z(m, 1) is as small as possible. 

Further, the values 0(2) and 0(3) are suitable lower bounds on the values 
of s which occur in Step 3 and Step 6, respectively, of Algorithm 1, because 
they are lower bounds of s in formulae (4.21). 

The results of this section are incorporated into Algorithm 1 and yield the 
following improved version. 

Algorithm 2 (An improved version for best piecewise monotonic approxima- 
tion). 

Step 0. Form the sets v and Y . If I + IY I < k, then terminate because 
y E Y(k, n). 

Step 1. For m = 2, 3, ..., k set 0(m) = 1. Calculate the numbers 
{a(l, s) s = 1, 2, ..., n} by applying Algorithm 3 to the data {'Ps s = 
1, 2, ..., n}. For each t in W, store y(1, t) = a(1, t) and T(1, t) =1. Set 
t to the smallest element of v . For each odd value of m in [1, k - 1] store 
y(m, t) = 0 and T-(m, t) = 1 . For each t E ' store z(O, t) = 1. 

Step 2. If no element of 2 is greater than t or if k = 2, then branch to 
Step 9. Otherwise make the least increase in t such that t E S9. 

Step 3. Calculate the numbers {I f(s, t): s = 0(2), 0(2) + 1, ..., t} by 
applying Algorithm 3 to the data {os: s = t, t - 1, ... , 0(2)}. 

Step 4. For each even value of m in [1, k - 1], store y(m, t) and T(m, t), 
which are obtained from formulae (4.21), and set 6(m) = z(m, t). 

Step 5. If no element of Z/ is greater than t, then branch to Step 9. Other- 
wise make the least increase in t such that t E W . 

Step 6. Calculate the numbers {a(s, t): s = 0(3), 0(3) + 1, ..., t} by 
applying Algorithm 3 to the data {-Vos s = t, t + 1, ... 0, (3)}. 

Step 7. For each odd value of m in [3, k - 1], store y(m, t) and z(m, t)-, 
which are obtained from formulae (4.21), and set 6(m) = z(m, t). 

Step 8. Go to Step 2. 
Step 9. Set t and tk to n and m = k. If k is odd, then in equation 

(4.21) replace max[0(m), z(m-2, t)] by z(m- 2, t*) , where t* is the greatest 
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element in Y. If k is even, perform a similar replacement in (4.21). Let tk- 1 

be a value of s that minimizes (4.21). 
Step 10-1 1. Apply Steps 10-1 1 of Algorithm 1. o 

Algorithm 2 treats directly the special case k = 2 in Step 2 by ignoring 
the Steps 3-8. This case requires that the monotonic algorithm be applied 
only twice to all n components of v in order to identify t1, which implies 
optimal complexity. Further, we see that the results of ?3 yield formulae (4.21), 
which identify the main difference between this algorithm and Algorithm 1. 
Therefore, Algorithm 2 is also a finite procedure for calculating an optimal 
approximation with k monotonic sections to v E In . However, it is not easy 
to disentangle the operations count for Algorithm 2 from that for Algorithm 1, 
because the monotonicity properties of the extrema are incorporated throughout 
the process of this calculation. Thus, Algorithm 2 is at least as good as Algorithm 
1. Therefore, in the absence of any structure in the data, the superiority of 
Algorithm 2 can only be determined empirically. 

The use, however, of formulae (4.21) in practical calculations is quite ad- 
vantageous, because they provide a calculation that depends on the position of 
the rightmost integer variable tm-i of the smoothed values. In effect, as the 
data increases, the variable tm-i also increases, which reduces the size of the 
required monotonic calculations, except if most of the monotonic sections are 
bunched in the beginning of the range of the data. 

The efficacy of the properties of the last two sections is tested extensively in 
the next section on sets of substantially different data. The numerical results 
indicate that the formulae (4.21) are far more effective in practice than their 
complexity suggests in theory. 

5. NUMERICAL RESULTS AND DISCUSSION 

This section presents some details of numerical examples that show the per- 
formance of the algorithms of this paper for calculating least squares piecewise 
monotonic approximations to data contaminated with random errors. The least 
squares calculations were chosen because they are useful, tractable, easy to ap- 
ply, and require extremely little time for termination. The monotonic approx- 
imations were obtained by Algorithm 1 of Demetriou and Powell [5]. Since 
all algorithms for piecewise monotonic approximation give a global solution, 
the measure of the effectiveness of each algorithm is the computational time 
required for smoothing a variety of data sets. 

We consider measurements of the function f(x) = sin(7rx) on the equally 
spaced grids 0=xi < x2 < < xn = 4, 0 = xl < x2 < <.xn = 7, 
and 0 = x1 <x2 < ...< Xn = 14, and we generate data sets by adding to the 
measurements numbers uniformly distributed over the interval [-r/n, r/n], 
where r is allowed to take the values 0, 10, and 100. We let the number of 
data take the values n = 20, 100, 1000, 5000, and 10000. We require best 
approximations with five, eight, and fifteen monotonic sections on the first, 
second, and third grid, respectively. We tabulate the CPU times required by 
Fortran 77 versions of Algorithms 1 and 2 to carry out these calculations on a 
VAX 8810 computer system. 

In Table 1 we present n versus the data derived for a specific r as follows: 
the first, the second, and the third entry of the first column of each r give 
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TABLE 1. Tabulation of 1/1, CPU times to form v and , 
and CPU times to apply the Steps 9-11 of Algorithm 1 (Time 
is measured in SECONDS.CENTISECONDS on a VAX 8810 computer) 

r 0 10/n 100/n 
n k=5 k=8 k=15 k=5 k=8 k=15 k=5 k=8 k=15 

3 4 8 4 4 8 8 7 8 
20 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
3 4 8 16 10 8 34 32 32 

100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

3 4 8 178 84 39 332 318 299 
1000 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 

0.00 0.01 0.01 0.01 0.00 0.01 0.02 0.02 0.01 
3 4 8 867 452 221 1659 1640 1509 

5000 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 
0.03 0.03 0.03 0.04 0.04 0.04 0.07 0.07 0.06 

3 4 8 1776 913 433 3335 3267 3042 
10000 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 

0.06 0.06 0.06 0.10 0.08 0.06 0.13 0.13 0.12 

TABLE 2. CPU times required by Algorithm 1 and Algorithm 
2 when k = 5, k = 8, k = 15, and r = 0, 10/n, 100/n 
(Time is measured in MINUTES:SECONDS.CENTISECONDS on a 
VAX 8810 computer) 

I I k4Z~hk= m5 k=8 k= 15 
r n 1K1 Algorthm Algorithm Algorithm 

r n 1 2 1 2 1 2 
20 3 00: 00.00 00: 00.01 4 00: 00.00 00: 00.00 8 00: 00.01 00: 00.00 

100 3 00:00.01 00:00.01 4 00:00.01 00: 00.01 8 00:00.02 00:00.01 
r =0 1000 3 00: 00.06 00: 00.05 4 00: 00.08 00: 00.05 8 OC: 00.14 00: 00.06 

5000 3 00: 00.29 00 00.23 4 00: 00.40 00: 00.33 8 00 :00.68 00 :00.48 
10000 3 00:00.61 00:00.56 4 00:00.80 00:00.53 8 00:01.39 00: 00.53 

20 4 00: 00.00 00: 00.00 4 00 : 00.01 00: 00.00 8 00: 00.00 00: 00.00 
100 16 00: 00.02 00: 00.01 10 00: 00.02 00: 00.01 8 00: 00.02 00: 00.01 

r = 10/n 1000 178 00: 02.57 00: 00.91 84 00: 01.32 00: 00.41 39 00: 00.64 00: 00.31 
5000 867 01 :01.71 00: 30.28 452 00: 33.52 00: 19.38 221 00: 17.35 00: 12.68 

10000 1776 04: 22.55 02 : 07.48 913 02: 15.61 00: 42.31 433 01: 06.07 00: 19.77 
20 8 00: 00.00 00: 00.00 7 00: 00.01 00: 00.01 8 00: 00.00 00: 00.00 

100 34 00: 00.06 00 : 00.02 32 00: 00.05 00: 00.02 32 00: 00.06 00: 00.03 
r = 100/n 1000 332 00: 05.14 00: 02.29 318 00: 04.96 00: 01.96 299 00: 04.94 00: 02.52 

5000 1659 02: 10.80 00: 55.60 1640 02: 12.79 01: 04.24 1509 02: 13.61 01: 40.72 
10000 3335 08: 57.55 05: 10.90 3267 09 :03.70 05: 10.90 3042 08: 38.04 03: 42.33 

the number of the local maxima of the data (1/I'), the CPU time required to 
form the sets D' and 2, and the CPU time required to calculate an optimal 
approximation by Steps 9-11 of Algorithm 1, when k = 5. Similarly for the 
second column, when k = 8, and for the third column, when k = 15. These 
times show that the corresponding operations make a small contribution to the 
computational complexity of the algorithm of ??3 and 4. The reason is that 
only 0(n) operations are needed to form the sets D' and Y and to apply the 
monotonic algorithm. 

Next we give Table 2 in order to compare Algorithm 1 with Algorithm 2. 
Algorithm 1 is useful mainly for testing the practical value of the theory which 
was established in ??3 and 4 and resulted in Algorithm 2. Table 2 consists of 
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a triplex of columns for the cases k = 5, k = 8, and k = 15. Each column- 
triplex gives the CPU times of Algorithm 1 and Algorithm 2, one column for 
each algorithm, and includes another column for 1f2/I. Also this table consists 
of a triplex of rows for the cases r = 0, r = 10/n, and r = 100/n. Moving 
down the columns of each row-triplex, we can see the individual performance of 
each algorithm for different values of n; while moving along the rows of each 
column-triplex, we can compare the algorithms by their execution times on the 
same data. Both algorithms performed quite well when IWI was small compared 
with n, but Algorithm 1 is clearly the most expensive one. Furthermore, Table 
2 confirms the strong relation between the required computational time and the 
number of local extrema of the data. 

Although the complexity of Algorithm 1 is O(nI /I + kI1/I2), by inspecting 
data sets that possess approximately the same IW', we see that much shorter 
computation times are achieved in practice as k increases. The results become 
by far better when Algorithm 2 is employed. Thus, the effectiveness of the 
theory presented in ??3 and 4 is confirmed numerically as well. 

Comparing the performance of Algorithm 1 with that of Algorithm 2, we 
see that the second algorithm is twice as fast as the former when applied to 
the same data sets. Algorithm 2 should be expected to be faster by more than 
a factor of two over Algorithm 1 when the number of data points increases. 
The reason is that the monotojiic calculations in Steps 3 and 6 of Algorithm 
1 involve all the current data, while the size of the monotonic calculations in 
Algorithm 2 depends on the positions of the rightmost integer variable and the 
currently rightmost data point. The main advantage of Algorithm 2 is that it 
provides a calculation, where, as the data increases, a rightmost integer variable 
of the approximation also increases, which subsequently shortens the ranges of 
the required monotonic approximations. 

In Figures 1, 2, 3, 4, 5, and 6 we draw some best approximations to certain 
data values. 

1.0 

e.5 

-1.0 

_05 , , I I t / I , , , ,~~~~~~~~I I t I, I , , I 

0 1 2 3 4 

FIGURE 1. Best approximation from Y(k = 5, n = 100) to 
data points derived from f(x) = sin(ix), r = 0 
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FIGURE 2. As in Figure 1, but k = 1, r = 1 
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FIGURE 4. AS in Figure 1, but k =3, r =1 
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FIGURE 6. As in Figure 1, but k =5, r =1 

6. CONCLUDING REMARKS 

We have presented theory, algorithms, and numerical evidence for the prob- 
lem of piecewise monotonic data smoothing. The algorithms are highly efficient 
in computer time and storage requirements, giving an exact answer in spite of 
the fact that 0(n k )local minima may occur in the calculation of an optimal 
approximation from Y(k, n) to (p. Since the complexity of formulae (4.21) 
is 0(k I W2), the main cost of the algorithms depends upon the particular form 
of the function hi that appears in the definition of (2.1). Particular special 
procedures that take into account the form of hi may be developed, as is noted 
at the end of the Appendix. 

Our approach to data smoothing is different from many other smoothing ap- 
proaches. We avoid the assumption that the underlying function f depends 
on a set of parameters and take the view that some useful smoothing should be 

possible if the datafaistosatsfyaprperytatiusallobti f .We 
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suggest using the presented smoothing technique when the errors in the data are 
so large that they can be detected by the first divided differences. An advantage 
of this technique is that it yields piecewise monotonicity that occurs in a wide 
range of underlying functions f. Further, by considering the function that is 
defined by piecewise linear interpolation to the smoothed values, it is easy to 
show that it satisfies the same sign condition on the first derivative as the sign 
condition on the first divided differences that is employed for smoothing. 

A disadvantage of the smoothing technique is that some significant errors in 
the data may be too small to be detected by the first divided differences. Also, 
the data errors are preserved at the integer variables {tj: j = 1, 2, ... , k - 1 } 
of an optimal approximation, owing to the interpolation relations (2.3). The 
criticism may be further directed at the presence of the ranges of constant values 
in the components of an optimal approximation. 

However, approximations that give smoother values arise in the work of 
Demetriou [2], where a limit on the number of sign changes in the second 
divided differences is imposed. 

Finally, quite a compact Fortran 77 code has been written for implementa- 
tion (Demetriou [4]) that makes the presented smoothing technique easy and 
attractive to use. Since there is a strong need for data smoothing methods in 
many experimental laboratories, the code has been documented in order to be 
suitable for submission to an international software library. 

APPENDIX. AN ALGORITHM FOR MONOTONIC APPROXIMATION 

BY A STRICTLY CONVEX DISTANCE FUNCTION 

The purpose of this appendix is to present a general algorithm for mono- 
tonic approximation that is useful in this paper. Algorithm 3 below can be 
used to calculate the numbers {a(p, j): j = p, p + 1, ... , q} together with 
the monotonic components that occur in (2.1). The numbers {,f(p, j): j = 
p, p + 1, ... , q} can be calculated by applying the same algorithm to the data 
{1(q, (Oq-l, ... qp }. Algorithm 3 generalizes the corresponding least squares 
version of Demetriou and Powell [5] and is justified by Demetriou [3]. Below, 
the auxiliary s-vector yfv, 1 < s < p - q + 1, is regarded as a representation 
of the best approximation that occurs in the definition of a(p, j), where each 
component WIj is repeated wi times. One may consult Demetriou and Powell 
for an extended discussion on its implementation in the least squares case. 

Algorithm 3 (The monotonic case). 
Step 0. Set j = p, s = 1 , YJs = (Pj, ws = 1 , and c(p, j) = O. 
Step 1. Go to Step 2 if j < q. Otherwise, either terminate because the 

numbers (2.1) have been calculated or, if required, go to Step 5 in order to 
calculate the best monotonic increasing approximation to {(op i = p, p + 

1,. .. , q} . 
Step 2. Increase j and s by one. Then set Yls = (Oj, ws = 1, a(p, j) = 

a(p, j - 1), and t = j. 
Step 3. If s = 1 or ls > Es-, replace a(p, j) by a(p, t - 1 ) + ht((pt - Is) + 

ht+I ((Pt+I - Els) + + hj((Pj - yls) and go to Step 1. 
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Step 4. Set t = j + 1 - (ws + ws- 1) . Then reduce s by one, and let ylt be the 
value of ?I that minimizes the sum ht((ot - C1) + ht+I (0t+I - t1) + + hj((oj - C) 
Then replace ws by ws + ws_ I and go to Step 3. 

Step 5. Set j = p and i = 1 . 
Step 6. Set {y(k) = yI(i): k = j.. , j+w(i)- 1} and j = j+w(i). Termi- 

nate if i = s because {Yk: k = p, p+ 1, . .. , q} is the required approximation. 
Otherwise increase i by 1 and branch to Step 6. 0 

We let v = q - p + 1 and we show that Algorithm 3 terminates after 0(v) 
applications of its steps. Since the integer j denotes the current data index, 
it indicates the number of times Step 1 is reached. Thus, Step 1 is reached 
exactly v times, and if j < q, it exits at Step 2. Since Step 2 is always 
preceded by Step 1, it is reached v - 1 times and each time increases the 
values of j and s by one. Since s can be at most equal to v, and since each 
application of Step 4 reduces the value of s by one, Step 4 can be applied 
at most v - 1 times. Step 3 is entered either from Step 2 or from Step 4, 
and therefore it can be reached at most 2v - 2 times. Finally, Steps 5 and 6 
require 0(v) operations in order to provide the best monotonic approximation 
to {Ioi: i = p, p + 1, ... , q} . Therefore, Algorithm 3 is a finite procedure for 
calculating the numbers {Ia(p, j): = p, p+ 1, . .. , q} and the best monotonic 
increasing approximation to {Ioj: i = p, p + 1, ... , q} . 

We note that the main costs of Algorithm 3 occur in Step 4, where the best 
approximation by a constant to the data {p: i = t, t + 1, ... , j} needs to be 
calculated. Several methods for this calculation exist in the literature (see, for 
example, McCormick [6]). 
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